

A Fresh View of Global Atmosphere and Ionosphere from the Combined GNSS-RO (Radio Occultation) Constellations

Dong L. Wu

NASA Goddard Space Flight Center, Code 613

Acknowledgments:

- Contributions from Daniel Emmons, Nimalan Swarnalingam, Manisha Ganeshan, Jie Gong, Tyler Summers
- Fundings from NASA's Programs: Commercial Smallsat Data Acquisition (CSDA), GNSS Science Team, Living With Star (LWS), and Sun-Climate Research

NASA HQ Lunch Seminar

Global Navigation Satellite Systems (GNSS) Radio Occultation (RO)

Wu (Remote Sensing, 2020)

Angling et al. (2021)

Spire Daily GNSS-RO Statistics (L1B: atmPhs)

Daily RO Observations Since CHAMP (NASA-DLR)

Wu et al. (Remote Sensing, 2022a)

Local Time Sampling

Daily Sampling Maps from GNSS RO

COSMIC-1 + Others (2009d001)

Comparisons of LEO Satellite Dimension and GNSS Tracking

COSMIC-1

D = 100 cmH = 18 cm

COSMIC-2

Spire

 $(L \times W \times H)$ 10 × 10 × 30 cm

	UNSS Hacking	Japanese Quasi Zenith Satellite System (QZSS).	
COSMIC-1	COSMIC2	Spire	
GPS	GPS, GLONASS	GPS, GLONASS, Galileo, QZSS	

CNCC Tracking

Sampling Comparisons of GNSS-RO and GNSS-POD

	RO Antennas (Atmos & D/E-Region)		POD Antennas (F-Region)	
	Total L1B	Ne	Total L1B	Ne
COSMIC-1 (Jan 1, 2008)	1,690 6,199	1,419	1,832	1,175
COSMIC-2 (Jan 1, 2022)		6,068	9,366	6,661
Spire (Jan 1, 2022)	15,900	15,756	18,433	5,960
POD antenna		TEC	↓ TEC	
RO antenna	RO data			POD data

Atmospheric Sciences

Fraction of SPIRE RO observations reaching PBL (ocean & low, flat land only)

Pecentage Observations: Tropics (Ocean+Low, Flat Land

Comparison of <u>Level-2 atmPrf</u> Sampling Statistics from Spire, COSMIC-1 and COSMIC-2:

- Spire has generally lower but comparable sampling in PBL;
- Large fraction of SPIRE RO profiles reach 1km level;
- Monthly variability in SPIRE RO penetration (%) evident at 1km level (tropics and NH midlatitude) and 200m level (NH midlatitude and NH polar regions).

- Novel method to infer PBL water vapor (q) from GNSS-RO amplitude
- Benefit of global • GNSS-RO sampling to study diurnal variations and polar regions

Ionospheric Sciences

Comparisons with TEC from IGS Network

Under evaluation

Spire 2-Hourly TEC Maps from Jan 2022

References

- Angling, M. J., et. al. (2021). Sensing the ionosphere with the Spire radio occultation constellation, J. Space Weather Space Clim. 11 56, DOI: 10.1051/swsc/2021040
- Wu, D.L., Ionospheric S4 Scintillations from GNSS Radio Occultation (RO) at Slant Path. Remote Sens. 2020, 2(15), 2373; https://doi.org/10.3390/rs12152373
- Wu, D.L.; Emmons, D.J.; Swarnalingam, N. Global GNSS-RO Electron Density in the Lower Ionosphere. Remote Sens. 2022a, 14, 1577. <u>https://doi.org/10.3390/rs14071577</u>
- Wu, D.L.; Gong, J.; Ganeshan, M. GNSS-RO Deep Refraction Signals from Moist Marine Atmospheric Boundary Layer (MABL). Atmosphere 2022b, 13, 953. <u>https://doi.org/10.3390/atmos13060953</u>
- Wu, D.L., et al. (2023), Optimal Estimation Inversion of F-Region Electron Density from GNSS-POD Measurements: Part I. Algorithm and Data Reduction, in preparation.
- Swarnalingam, N., et al. (2023), Optimal Estimation Inversion of F-Region Electron Density from GNSS-POD Measurements: Part II. Validation of hmF2 and NmF2, in preparation.